Alternating Current Question 5

Question 5 - 2024 (27 Jan Shift 2)

A series LCR circuit with $\mathrm{L}=\frac{100}{\pi} \mathrm{mH}, \mathrm{C}=\frac{10^{-3}}{\pi} \mathrm{F}$ and $\mathrm{R}=10 \Omega$, is connected across an ac source of $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The power factor of the circuit would be

Show Answer

Answer: (1)

Solution:

$\mathrm{X}_{\mathrm{c}}=\frac{1}{\omega \mathrm{C}}=\frac{\pi \text { nathon }}{2 \pi \times 50 \times 10^{-3}}=10 \Omega$

$\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=2 \pi \times 50 \times \frac{100}{\pi} \times 10^{-3}$

$=10 \Omega$

$\because \mathrm{X}{\mathrm{C}}=\mathrm{X}{\mathrm{L}}$, Hence, circuit is in resonance

$\therefore$ power factor $=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{\mathrm{R}}{\mathrm{R}}=1$