Vector Algebra Question 8

Question 8 - 2024 (29 Jan Shift 2)

Let a unit vector $\hat{\mathrm{u}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}$ make angles $\frac{\pi}{2}, \frac{\pi}{3}$ and $\frac{2 \pi}{3}$ with the vectors $\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}, \frac{1}{\sqrt{2}} \hat{\mathrm{j}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$ and $\frac{1}{\sqrt{2}} \hat{\mathbf{i}}+\frac{1}{\sqrt{2}} \hat{\mathbf{j}}$ respectively. If $\vec{v}=\frac{1}{\sqrt{2}} \hat{\mathbf{i}}+\frac{1}{\sqrt{2}} \hat{\mathbf{j}}+\frac{1}{\sqrt{2}} \hat{k}$, then $|\hat{\mathbf{u}}-\overrightarrow{\mathrm{v}}|^{2}$ is equal to

(1) $\frac{11}{2}$

(2) $\frac{5}{2}$

(3) 9

(4) 7

Show Answer

Answer (2)

Solution

Unit vector $\hat{\mathbf{u}}=x \hat{\mathrm{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$

$\overrightarrow{\mathrm{p}}{1}=\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}, \overrightarrow{\mathrm{p}}{2}=\frac{1}{\sqrt{2}} \hat{\mathrm{j}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$

$\overrightarrow{\mathrm{p}}_{3}=\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{j}}$

Now angle between $\hat{\mathrm{u}}$ and $\overrightarrow{\mathrm{p}}_{1}=\frac{\pi}{2}$

$\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_{1}=0 \Rightarrow \frac{\mathrm{x}}{\sqrt{2}}+\frac{\mathrm{z}}{\sqrt{2}}=0$

$\Rightarrow \mathrm{x}+\mathrm{z}=0 \ldots(\mathrm{i})$

Angle between $\hat{\mathrm{u}}$ and $\overrightarrow{\mathrm{p}}_{2}=\frac{\pi}{3}$

$\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}{2}=|\hat{\mathrm{u}}| \cdot\left|\overrightarrow{\mathrm{p}}{2}\right| \cos \frac{\pi}{3}$

$\Rightarrow \frac{\mathrm{y}}{\sqrt{2}}+\frac{\mathrm{z}}{\sqrt{2}}=\frac{1}{2} \Rightarrow \mathrm{y}+\mathrm{z}=\frac{1}{\sqrt{2}}$

Angle between $\hat{\mathrm{u}}$ and $\overrightarrow{\mathrm{p}}_{3}=\frac{2 \pi}{3}$

$\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}{3}=|\hat{\mathrm{u}}| \cdot\left|\overrightarrow{\mathrm{p}}{3}\right| \cos \frac{2 \pi}{3}$

$\Rightarrow \frac{\mathrm{x}}{\sqrt{2}}+\frac{4}{\sqrt{2}}=\frac{-1}{2} \Rightarrow \mathrm{x}+\mathrm{y}=\frac{-1}{\sqrt{2}} \ldots$

from equation (i), (ii) and (iii) we get

$x=\frac{-1}{\sqrt{2}} \quad y=0 \quad z=\frac{1}{\sqrt{2}}$

Thus $\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}=\frac{-1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}-\frac{1}{\sqrt{2}} \hat{\mathrm{i}}-\frac{1}{\sqrt{2}} \hat{\mathrm{j}}-\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$

$\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}=\frac{-2}{\sqrt{2}} \hat{\mathrm{i}}-\frac{1}{\sqrt{2}} \hat{\mathrm{j}}$

$\therefore|\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}|^{2}=\left(\sqrt{\frac{4}{2}+\frac{1}{2}}\right)^{2}=\frac{5}{2}$