Vector Algebra Question 13

Question 13 - 2024 (31 Jan Shift 1)

Let $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \quad \vec{b}=4 \hat{i}+\hat{j}+7 \hat{k} \quad$ and $\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ be three vectors. If a vectors $\overrightarrow{\mathrm{p}}$ satisfies $\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{p} \cdot \vec{a}=0$, then $\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k})$ is equal to

(1) 24

(2) 36

(3) 28

(4) 32

Show Answer

Answer (4)

Solution

$\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{0}$

$(\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{c}}) \times \overrightarrow{\mathrm{b}}=\overrightarrow{0}$

$\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{c}}=\lambda \overrightarrow{\mathrm{b}} \Rightarrow \overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{c}}+\lambda \overrightarrow{\mathrm{b}}$

Now, $\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{a}}=0$ (given)

So, $\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0$

$(3-3-8)+\lambda(12+1-14)=0$

$\lambda=-8$

$\overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{c}}-8 \overrightarrow{\mathrm{b}}$

$\vec{p}=-31 \hat{i}-11 \hat{j}-52 \hat{k}$

So, $\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k})$

$=-31+11+52$

$=32$