Trigonometric Equations Question 6

Question 6 - 2024 (30 Jan Shift 1)

If $2 \sin ^{3} x+\sin 2 x \cos x+4 \sin x-4=0$ has exactly 3 solutions in the interval $\left[0, \frac{\mathrm{n} \pi}{2}\right], \mathrm{n} \in \mathrm{N}$, then the roots of the equation $x^{2}+n x+(n-3)=0$ belong to :

(1) $(0, \infty)$

(2) $(-\infty, 0)$

(3) $\left(-\frac{\sqrt{17}}{2}, \frac{\sqrt{17}}{2}\right)$

(4) Z

Show Answer

Answer (2)

Solution

$2 \sin ^{3} x+2 \sin x \cdot \cos ^{2} x+4 \sin x-4=0$

$2 \sin ^{3} x+2 \sin x \cdot\left(1-\sin ^{2} x\right)+4 \sin x-4=0$

$6 \sin x-4=0$

$\sin x=\frac{2}{3}$

$\mathbf{n}=\mathbf{5}$ (in the given interval)

$x^{2}+5 x+2=0$

$x=\frac{-5 \pm \sqrt{17}}{2}$

Required interval $(-\infty, 0)$