Trigonometric Equations Question 1

Question 1 - 2024 (01 Feb Shift 2)

The number of solutions of the equation $4 \sin ^{2} x-4 \cos ^{3} x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$ is :

(1) 1

(2) 3

(3) 2

(4) 0

Show Answer

Answer (4)

Solution

$4 \sin ^{2} x-4 \cos ^{3} x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$

$4-4 \cos ^{2} x-4 \cos ^{3} x+9-4 \cos x=0$

$4 \cos ^{3} x+4 \cos ^{2} x+4 \cos x-13=0$

$4 \cos ^{3} x+4 \cos ^{2} x+4 \cos x=13$

L.H.S. $\leq 12 \mathrm{can}^{\prime} \mathrm{t}$ be equal to 13 .