Three Dimensional Geometry Question 18

Question 18 - 2024 (30 Jan Shift 2)

Let $L_{1}: \overrightarrow{\mathbf{r}}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}-\hat{j}+2 \hat{k}), \lambda \in R L_{2}: \overrightarrow{\mathbf{r}}=(\hat{\mathbf{j}}-\hat{\mathbf{k}})+\mu(3 \hat{\mathrm{i}}+\hat{\mathbf{j}}+\mathrm{p} \hat{\mathbf{k}}), \mu \in R$ and $\mathrm{L}_{3}: \overrightarrow{\mathbf{r}}=\delta(\ell \hat{\mathbf{i}}+\mathrm{m} \hat{\mathbf{j}}+\mathrm{n} \hat{\mathbf{k}}) \delta \in \mathrm{R}$

Be three lines such that $L_{1}$ is perpendicular to $L_{2}$ and $L_{3}$ is perpendicular to both $L_{1}$ and $L_{2}$. Then the point which lies on $L_{3}$ is

(1) $(-1,7,4)$

(2) $(-1,-7,4)$

(3) $(1,7,-4)$

(4) $(1,-7,4)$

Show Answer

Answer (1)

Solution

$\mathrm{L}{1} \perp \mathrm{L}{2}$

$3-1+2 \mathrm{P}=0$

$\mathrm{P}=-1$

$\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \ 1 & -1 & 2 \ 3 & 1 & -1\end{array}\right|=-\hat{i}+7 \hat{j}+4 \hat{k}$

$\therefore(-\delta, 7 \delta, 4 \delta)$ will lie on $\mathrm{L}_{3}$

For $\delta=1$ the point will be $(-1,7,4)$