Three Dimensional Geometry Question 16

Question 16 - 2024 (30 Jan Shift 1)

Let $(\alpha, \beta, \gamma)$ be the foot of perpendicular from the point $(1,2,3)$ on the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$. then

$19(\alpha+\beta+\gamma)$ is equal to :

(1) 102

(2) 101

(3) 99

(4) 100

Show Answer

Answer (2)

Solution

$(1,2,3)$

Description of the image

Let foot $P(5 k-3,2 k+1,3 k-4)$

$\mathrm{DR}^{\prime} \mathrm{s} \rightarrow \mathrm{AP}: 5 \mathrm{k}-4,2 \mathrm{k}-1,3 \mathrm{k}-7$

DR’s $\rightarrow$ Line: $5,2,3$

Condition of perpendicular lines $(25 k-20)+(4 k-2)+(9 k-21)=0$

Then $\mathrm{k}=\frac{43}{38}$

Then $19(\alpha+\beta+\gamma)=\mathbf{1 0 1}$