Straight Lines Question 7

Question 7 - 2024 (29 Jan Shift 1)

Let $\left(5, \frac{a}{4}\right)$, be the circumcenter of a triangle with vertices $A(a,-2), B(a, 6)$ and $C\left(\frac{a}{4},-2\right)$. Let $\alpha$ denote the circumradius, $\beta$ denote the area and $\gamma$ denote the perimeter of the triangle. Then $\alpha+\beta+\gamma$ is

(1) 60

(2) 53

(3) 62

(4) 30

Show Answer

Answer (2)

Solution

$A(a,-2), B(a, 6), C\left(\frac{a}{4},-2\right), O\left(5, \frac{a}{4}\right)$

$A O=B O$

$(a-5)^{2}+\left(\frac{a}{4}+2\right)^{2}=(a-5)^{2}+\left(\frac{a}{4}-6\right)^{2}$

$a=8$

$A B=8, A C=6, B C=10$

$\alpha=5, \beta=24, \gamma=24$