Straight Lines Question 3

Question 3 - 2024 (27 Jan Shift 2)

Let $\mathrm{R}$ be the interior region between the lines $3 x-y+1=0$ and $x+2 y-5=0$ containing the origin. The set of all values of $a$, for which the points $\left(a^{2}, a+1\right)$ lie in $R$, is :

(1) $(-3,-1) \cup\left(-\frac{1}{3}, 1\right)$

(2) $(-3,0) \cup\left(\frac{1}{3}, 1\right)$

(3) $(-3,0) \cup\left(\frac{2}{3}, 1\right)$

(4) $(-3,-1) \cup\left(\frac{1}{3}, 1\right)$

Show Answer

Answer (2)

Solution

$P\left(a^{2}, a+1\right)$

$L_{1}=3 x-y+1=0$

Origin and $\mathrm{P}$ lies same side w.r.t. $\mathrm{L}_{1}$

$\Rightarrow \mathrm{L}{1}(0) \cdot \mathrm{L}{1}(\mathrm{P})>0$

$\therefore 3\left(\mathrm{a}^{2}\right)-(\mathrm{a}+1)+1>0$

Description of the image

$\Rightarrow 3 \mathrm{a}^{2}-\mathrm{a}>0$

$\mathrm{a} \in(-\infty, 0) \cup\left(\frac{1}{3}, \infty\right) \ldots$

Let $\mathrm{L}_{2}: \mathrm{x}+2 \mathrm{y}-5=0$

Origin and $\mathrm{P}$ lies same side w.r.t. $\mathrm{L}_{2}$

$$ \begin{align*} & \Rightarrow \mathrm{L}{2}(0) \cdot \mathrm{L}{2}(\mathrm{P})>0 \ & \Rightarrow \mathrm{a}^{2}+2(\mathrm{a}+1)-5<0 \ & \Rightarrow \mathrm{a}^{2}+2 \mathrm{a}-3<0 \ & \Rightarrow(\mathrm{a}+3)(\mathrm{a}-1)<0 \ & \therefore \mathrm{a} \in(-3,1) \ldots \ldots \ldots \ldots \tag{2} \end{align*} $$

Intersection of (1) and (2)

$\mathrm{a} \in(-3,0) \cup\left(\frac{1}{3}, 1\right)$