Straight Lines Question 14

Question 14 - 2024 (31 Jan Shift 2)

Let $A(-2,-1), B(1,0), C(\alpha, \beta)$ and $D(\gamma, \delta)$ be the vertices of a parallelogram $A B C D$. If the point $C$ lies on $2 x-y=5$ and the point $D$ lies on $3 x-2 y=6$, then the value of $|\alpha+\beta+\gamma+\delta|$ is equal to

Show Answer

Answer (32)

Solution

Description of the image

$\mathrm{P} \equiv\left(\frac{\alpha-2}{2}, \frac{\beta-1}{2}\right) \equiv\left(\frac{\gamma+1}{2}, \frac{\delta}{2}\right)$

$\frac{\alpha-2}{2}=\frac{\gamma+1}{2}$ and $\frac{\beta-1}{2}=\frac{\delta}{2}$

$\Rightarrow \alpha-\gamma=3 \ldots(1), \quad \beta-\delta=1$

Also, $(\gamma, \delta)$ lies on $3 x-2 y=6$

$3 \gamma-2 \delta=6$

and $(\alpha, \beta)$ lies on $2 x-y=5$

$\Rightarrow 2 \alpha-\beta=5$.

Solving (1), (2), (3), (4)

$\alpha=-3, \beta=-11, \gamma=-6, \delta=-12$

$|\alpha+\beta+\gamma+\delta|=32$