Straight Lines Question 12

Question 12 - 2024 (31 Jan Shift 1)

Let $\alpha, \beta, \gamma, \delta \in \mathrm{Z}$ and let $\mathrm{A}(\alpha, \beta), \mathrm{B}(1,0), \mathrm{C}(\gamma, \delta)$ and $D(1,2)$ be the vertices of a parallelogram $A B C D$. If $A B=\sqrt{10}$ and the points $A$ and $C$ lie on the line $3 y=2 x+1$, then $2(\alpha+\beta+\gamma+\delta)$ is equal to

(1) 10

(2) 5

(3) 12

(4) 8

Show Answer

Answer (4)

Solution

$\mathrm{D}(1,2)$

$\mathrm{C}(\gamma, \delta)$

Description of the image

$\mathrm{A}(\alpha, \beta)$

$\mathrm{B}(1,0)$

Let $\mathrm{E}$ is mid point of diagonals

$\frac{\alpha+\gamma}{2}=\frac{1+1}{2}$

$& \frac{\beta+\delta}{2}=\frac{2+0}{2}$

$\alpha+\gamma=2$

$\beta+\delta=2$

$2(\alpha+\beta+\gamma+\delta)=2(2+2)=8$