Statistics Question 9

Question 9 - 2024 (31 Jan Shift 2)

Let the mean and the variance of 6 observation $\mathrm{a}, \mathrm{b}, 68,44,48,60$ be 55 and 194 , respectively if $a>b$, then $a+3 b$ is

(1) 200

(2) 190

(3) 180

(4) 210

Show Answer

Answer (3)

Solution

$a, b, 68,44,48,60$

Mean $=55$

Variance $=194 \quad a>b$

$\frac{a+b+68+44+48+60}{6}=55$

$\Rightarrow 220+a+b=330$

$\therefore a+b=110$.

Also,

$\sum \frac{\left(x_{i}-\bar{x}\right)^{2}}{n}=194$

$\Rightarrow(a-55)^{2}+(b-55)^{2}+(68-55)^{2}+(44-55)^{2}$

$+(48-55)^{2}+(60-55)^{2}=194 \times 6$

$\Rightarrow(a-55)^{2}+(b-55)^{2}+169+121+49+25=1164$

$\Rightarrow(a-55)^{2}+(b-55)^{2}=1164-364=800$

$a^{2}+3025-110 a+b^{2}+3025-110 b=800$

$\Rightarrow a^{2}+b^{2}=800-6050+12100$

$a^{2}+b^{2}=6850$

Solve (1) $\backslash &$ (2);

$a=75, b=35$

$\therefore a+3 b=75+3(35)=75+105=180$