Statistics Question 4

Question 4 - 2024 (27 Jan Shift 2)

The mean and standard deviation of 15 observations were found to be 12 and 3 respectively. On rechecking it was found that an observation was read as 10 in place of 12 . If $\mu$ and $\sigma^{2}$ denote the mean and variance of the correct observations respectively, then $15\left(\mu+\mu^{2}+\sigma^{2}\right)$ is equal to

Show Answer

Answer (2521)

Solution

Let the incorrect mean be $\mu^{\prime}$ and standard deviation be $\sigma^{\prime}$

We have

$\mu^{\prime}=\frac{\Sigma \mathrm{x}{\mathrm{i}}}{15}=12 \Rightarrow \Sigma \mathrm{x}{\mathrm{i}}=180$

As per given information correct $\Sigma \mathrm{x}_{\mathrm{i}}=180-10+12$

$\Rightarrow \mu($ correct mean $)=\frac{182}{15}$

Also

$\sigma^{\prime}=\sqrt{\frac{\Sigma \mathrm{x}{\mathrm{i}}{ }^{2}}{15}-144}=3 \Rightarrow \Sigma \mathrm{x}{\mathrm{i}}{ }^{2}=2295$

Correct $\Sigma \mathrm{x}_{\mathrm{i}}{ }^{2}=2295-100+144=2339$

$\sigma^{2}($ correct variance $)=\frac{2339}{15}-\frac{182 \times 182}{15 \times 15}$

Required value

$$ \begin{aligned} & =15\left(\mu+\mu^{2}+\sigma^{2}\right) \ & =15\left(\frac{182}{15}+\frac{182 \times 182}{15 \times 15}+\frac{2339}{15}-\frac{182 \times 182}{15 \times 15}\right) \ & =15\left(\frac{182}{15}+\frac{2339}{15}\right) \ & =2521 \end{aligned} $$