Sets And Relations Question 4

Question 4 - 2024 (27 Jan Shift 1)

Let $S={1,2,3, \ldots, 10}$. Suppose $M$ is the set of all the subsets of $S$, then the relation $\mathrm{R}={(\mathrm{A}, \mathrm{B}): \mathrm{A} \cap \mathrm{B} \neq \phi ; \mathrm{A}, \mathrm{B} \in \mathrm{M}}$ is $:$

(1) symmetric and reflexive only

(2) reflexive only

(3) symmetric and transitive only

(4) symmetric only

Show Answer

Answer (4)

Solution

Let $S={1,2,3, \ldots, 10}$

$\mathrm{R}={(\mathrm{A}, \mathrm{B}): \mathrm{A} \cap \mathrm{B} \neq \phi ; \mathrm{A}, \mathrm{B} \in \mathrm{M}}$

For Reflexive,

$M$ is subset of ’ $S$ '

So $\phi \in \mathrm{M}$

for $\phi \cap \phi=\phi$

$\Rightarrow$ but relation is $\mathrm{A} \cap \mathrm{B} \neq \phi$

So it is not reflexive.

For symmetric,

$\mathrm{ARB} \quad \mathrm{A} \cap \mathrm{B} \neq \phi$,

$\Rightarrow \mathrm{BRA} \Rightarrow \mathrm{B} \cap \mathrm{A} \neq \phi$,

So it is symmetric.

For transitive,

If $A={(1,2),(2,3)}$

$B={(2,3),(3,4)}$

$C={(3,4),(5,6)}$

$\mathrm{ARB} \backslash & \mathrm{BRC}$ but $\mathrm{A}$ does not relate to $\mathrm{C}$

So it not transitive