Sequences And Series Question 9

Question 9 - 2024 (29 Jan Shift 1)

In an A.P., the sixth terms $a_{6}=2$. If the $a_{1} a_{4} a_{5}$ is the greatest, then the common difference of the A.P., is equal to

(1) $\frac{3}{2}$

(2) $\frac{8}{5}$

(3) $\frac{2}{3}$

(4) $\frac{5}{8}$

Show Answer

Answer (2)

Solution

$a_{6}=2 \Rightarrow a+5 d=2$

$a_{1} a_{4} a_{5}=a(a+3 d)(a+4 d)$

$=(2-5 d)(2-2 d)(2-d)$

$f(d)=8-32 d+34 d^{2}-20 d+30 d^{2}-10 d^{3}$

$f^{\prime}(d)=-2(5 d-8)(3 d-2)$

Description of the image $\mathrm{d}=\frac{8}{5}$