Sequences And Series Question 7

Question 7 - 2024 (27 Jan Shift 2)

The $20^{\text {th }}$ term from the end of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots,-129 \frac{1}{4}$ is :-

(1) -118

(2) -110

(3) -115

(4) -100

Show Answer

Answer (3)

Solution

$20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots \ldots,-129 \frac{1}{4}$

This is A.P. with common difference

$d_{1}=-1+\frac{1}{4}=-\frac{3}{4}$

$-129 \frac{1}{4}, \ldots \ldots \ldots . .19 \frac{1}{4}, 20$

This is also A.P. $\mathrm{a}=-129 \frac{1}{4}$ and $\mathrm{d}=\frac{3}{4}$

Required term $=$

$-129 \frac{1}{4}+(20-1)\left(\frac{3}{4}\right)$

$=-129-\frac{1}{4}+15-\frac{3}{4}=-115$