Sequences And Series Question 4

Question 4 - 2024 (01 Feb Shift 2)

If three successive terms of a G.P. with common ratio $r(r>1)$ are the lengths of the sides of a triangle and $[r]$ denotes the greatest integer less than or equal to $r$, then $3[r]+[-r]$ is equal to :

Show Answer

Answer (1)

Solution

a, ar, $\mathrm{ar}^{2} \rightarrow$ G.P.

Sum of any two sides $>$ third side

$a+a r>a r^{2}, a+a r^{2}>a r, a r+a r^{2}>a$

$r^{2}-r-1<0$

$r \in\left(\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right) \ldots$

$\mathrm{r}^{2}-\mathrm{r}+1>0$

always true

$\mathrm{r}^{2}+\mathrm{r}-1>0$

$\mathrm{r} \in\left(-\infty,-\frac{1-\sqrt{5}}{2}\right) \cup\left(\frac{-1+\sqrt{5}}{2}, \infty\right)$.

Taking intersection of (1), (2)

$\mathrm{r} \in\left(-\frac{1+\sqrt{ } 5}{2}, \frac{1+\sqrt{ } 5}{2}\right)$

As $\mathrm{r}>1$

$\mathrm{r} \in\left(1, \frac{1+\sqrt{5}}{2}\right)$

$[\mathrm{r}]=1[-\mathrm{r}]=-2$

$3[\mathrm{r}]+[-\mathrm{r}]=1$