Sequences And Series Question 13

Question 13 - 2024 (30 Jan Shift 1)

Let $\alpha=1^{2}+4^{2}+8^{2}+13^{2}+19^{2}+26^{2}+\ldots$ upto 10 terms and $\beta=\sum_{n=1}^{10} n^{4}$. If $4 \alpha-\beta=55 k+40$, then $\mathrm{k}$ is equal to

Show Answer

Answer (353)

Solution

$\alpha=1^{2}+4^{2}+8^{2} \ldots$

$t_{n}=a^{2}+b n+c$

$1=a+b+c$

$4=4 a+2 b+c$

$8=9 a+3 b+c$

On solving we get, $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{3}{2}, \mathrm{c}=-1$

$\alpha=\sum_{\mathrm{n}=1}^{10}\left(\frac{\mathrm{n}^{2}}{2}+\frac{3 \mathrm{n}}{2}-1\right)^{2}$

$4 \alpha=\sum_{n=1}^{10}\left(n^{2}+3 n-2\right)^{2}, \beta=\sum_{n=1}^{10} n^{4}$

$4 \alpha-\beta=\sum_{n=1}^{10}\left(6 n^{3}+5 n^{2}-12 n+4\right)=55(353)+40$