Sequences And Series Question 10

Question 10 - 2024 (29 Jan Shift 2)

If $\log _{e} a, \log _{e} b, \log _{e} c$ are in an A.P. and $\log _{e} a-\log _{e} 2 b, \log _{e} 2 b-\log _{e} 3 c, \log _{e} 3 c-\log _{e} a$ are also in an A.P, then $\mathrm{a}: \mathrm{b}: \mathrm{c}$ is equal to

(1) $9: 6: 4$

(2) $16: 4: 1$

(3) $25: 10: 4$

(4) $6: 3: 2$

Show Answer

Answer (1)

Solution

$\log _{e} a, \log _{e} b, \log _{e} c$ are in A.P.

$\therefore \mathrm{b}^{2}=\mathrm{ac} \ldots(i)$

Also

$\log _{e}\left(\frac{a}{2 b}\right), \log _{e}\left(\frac{2 b}{3 c}\right), \log _{e}\left(\frac{3 c}{a}\right)$ are in A.P.

$\left(\frac{2 \mathrm{~b}}{3 \mathrm{c}}\right)^{2}=\frac{\mathrm{a}}{2 \mathrm{~b}} \times \frac{3 \mathrm{c}}{\mathrm{a}}$

$\frac{\mathrm{b}}{\mathrm{c}}=\frac{3}{2}$

Putting in eq. (i) $b^{2}=a \times \frac{2 b}{3}$

$\frac{a}{b}=\frac{3}{2}$

$a: b: c=9: 6: 4$