Quadratic Equation Question 8

Question 8 - 2024 (31 Jan Shift 1)

Let $S$ be the set of positive integral values of a for which $\frac{a^{2}+2(a+1) x+9 a+4}{x^{2}-8 \mathrm{x}+32}<0, \forall \mathbf{x} \in \mathbb{R}$.

Then, the number of elements in $\mathrm{S}$ is :

(1) 1

(2) 0

(3) $\infty$

(4) 3

Show Answer

Answer (2)

Solution

$a x^{2}+2(a+1) x+9 a+4<0 \forall x \in R$

$\therefore a<0$