Quadratic Equation Question 8
Question 8 - 2024 (31 Jan Shift 1)
Let $S$ be the set of positive integral values of a for which $\frac{a^{2}+2(a+1) x+9 a+4}{x^{2}-8 \mathrm{x}+32}<0, \forall \mathbf{x} \in \mathbb{R}$.
Then, the number of elements in $\mathrm{S}$ is :
(1) 1
(2) 0
(3) $\infty$
(4) 3
Show Answer
Answer (2)
Solution
$a x^{2}+2(a+1) x+9 a+4<0 \forall x \in R$
$\therefore a<0$