Quadratic Equation Question 1

Question 1 - 2024 (01 Feb Shift 1)

Let $S=\left{x \in R:(\sqrt{3}+\sqrt{2})^{x}+(\sqrt{3}-\sqrt{2})^{x}=10\right}$.

Then the number of elements in $\mathrm{S}$ is :

(1) 4

(2) 0

(3) 2

(4) 1

Show Answer

Answer (3)

Solution

$(\sqrt{3}+\sqrt{2})^{x}+(\sqrt{3}-\sqrt{2})^{x}=10$

Let $(\sqrt{3}+\sqrt{2})^{\mathrm{x}}=\mathrm{t}$

$\mathrm{t}+\frac{1}{\mathrm{t}}=10$

$\mathrm{t}^{2}-10 \mathrm{t}+1=0$

$t=\frac{10 \pm \sqrt{100-4}}{2}=5 \pm 2 \sqrt{6}$

$(\sqrt{3}+\sqrt{2})^{x}=(\sqrt{3} \pm \sqrt{2})^{2}$

$\mathrm{x}=2$ or $\mathrm{x}=-2$

Number of solutions $=2$