Parabola Question 3

Question 3 - 2024 (30 Jan Shift 1)

The maximum area of a triangle whose one vertex is at $(0,0)$ and the other two vertices lie on the curve $y=-2 x^{2}+54$ at points $(x, y)$ and $(-x, y)$ where $\mathrm{y}>0$ is :

(1) 88

(2) 122

(3) 92

(4) 108

Show Answer

Answer (4)

Solution

Description of the image

Area of $\Delta$

$=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \ \mathrm{x} & \mathrm{y} & 1 \ -\mathrm{x} & \mathrm{y} & 1\end{array}\right|$

$\Rightarrow\left|\frac{1}{2}(\mathrm{xy}+\mathrm{xy})\right|=|\mathrm{xy}|$

$\operatorname{Area}(\Delta)=|\mathrm{xy}|=\left|\mathrm{x}\left(-2 \mathrm{x}^{2}+54\right)\right|$

$\frac{\mathrm{d}(\Delta)}{\mathrm{dx}}=\left|\left(-6 \mathrm{x}^{2}+54\right)\right| \Rightarrow \frac{\mathrm{d} \Delta}{\mathrm{dx}}=0$ at $\mathrm{x}=3$

Area $=3(-2 \times 9+54)=108$