Matrices Question 9

Question 9 - 2024 (31 Jan Shift 2)

Let $A$ be a $3 \times 3$ matrix and $\operatorname{det}(A)=2$. If

$$ \mathrm{n}=\operatorname{det}(\underbrace{\operatorname{adj}(\operatorname{adj}(\ldots \ldots(\operatorname{adj} A)}_{2024-\text { times }}))) $$

Then the remainder when $\mathrm{n}$ is divided by 9 is equal to

Show Answer

Answer (7)

Solution

$|\mathrm{A}|=2$

$\underbrace{\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \ldots \ldots(\mathrm{a})))}_{2024 \text { times }}=|\mathrm{A}|^{(\mathrm{n}-1)^{2024}}$

$=|\mathrm{A}|^{2024}$

$=2^{2024}$

$2^{2024}=\left(2^{2}\right) 2^{2022}=4(8)^{674}=4(9-1)^{674}$

$\Rightarrow 2^{2024} \equiv 4(\bmod 9)$

$\Rightarrow 2^{2024} \equiv 9 \mathrm{~m}+4, \mathrm{~m} \leftarrow$ even

$2^{9 \mathrm{~m}+4} \equiv 16 \cdot\left(2^{3}\right)^{3 \mathrm{~m}} \equiv 16(\bmod 9)$

$\equiv 7$