Matrices Question 4

Question 4 - 2024 (27 Jan Shift 2)

Let A be a $2 \times 2$ real matrix and $I$ be the identity matrix of order 2 . If the roots of the equation $|A-x I|=0$ be -1 and 3 , then the sum of the diagonal elements of the matrix $A^{2}$ is.

Show Answer

Answer (10)

Solution

$|A-x I|=0$

Roots are -1 and 3

Sum of roots $=\operatorname{tr}(\mathrm{A})=2$

Product of roots $=|\mathrm{A}|=-3$

Let $A=\left[\begin{array}{ll}a & b \ c & d\end{array}\right]$

We have $\mathrm{a}+\mathrm{d}=2$

$\mathrm{ad}-\mathrm{bc}=-3$

$A^{2}=\left[\begin{array}{ll}a & b \ c & d\end{array}\right] \times\left[\begin{array}{ll}a & b \ c & d\end{array}\right]=\left[\begin{array}{ll}a^{2}+b c & a b+b d \ a c+c d & b c+d^{2}\end{array}\right]$

We need $\mathrm{a}^{2}+\mathrm{bc}+\mathrm{bc}+\mathrm{d}^{2}$

$=a^{2}+2 b c+d^{2}$

$=(a+d)^{2}-2 a d+2 b c$

$=4-2(a d-b c)$

$=4-2(-3)$

$=4+6$

$=10$