Limits Question 3

Question 3 - 2024 (27 Jan Shift 1)

If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^{4}}}-\sqrt{2}}{x^{4}}$ and $b=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^{3}$ is :

(1) 36

(2) 32

(3) 25

(4) 30

Show Answer

Answer (2)

Solution

$$ \begin{aligned} a & =\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^{4}}}-\sqrt{2}}{x^{4}} \ & =\lim _{x \rightarrow 0} \frac{\sqrt{1+x^{4}}-1}{x^{4}\left(\sqrt{1+\sqrt{1+x^{4}}}+\sqrt{2}\right)} \end{aligned} $$

$$ =\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}\left(\sqrt{1+\sqrt{1+x^{4}}}+\sqrt{2}\right)\left(\sqrt{1+x^{4}}+1\right)} $$

Applying limit $\mathrm{a}=\frac{1}{4 \sqrt{2}}$

$b=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}$

$=\lim _{x \rightarrow 0} \frac{\left(1-\cos ^{2} x\right)(\sqrt{2}+\sqrt{1+\cos x})}{2-(1+\cos x)}$

$b=\lim _{x \rightarrow 0}(1+\cos x)(\sqrt{2}+\sqrt{1+\cos x})$

Applying limits $\mathrm{b}=2(\sqrt{2}+\sqrt{2})=4 \sqrt{2}$

Now, $\mathrm{ab}^{3}=\frac{1}{4 \sqrt{2}} \times(4 \sqrt{2})^{3}=32$