Limits Question 2

Question 2 - 2024 (01 Feb Shift 2)

Let $f(x)=\left{\begin{array}{c}x-1, x \text { is even, } \ 2 x, x \text { is odd, }\end{array} x\right.$. If for some $a \in N, f(f(f(a)))=21$, then $\lim _{x \rightarrow a^{-}}\left{\frac{|x|^{3}}{a}-\left[\frac{x}{a}\right]\right}$, where $[t]$ denotes the greatest integer less than or equal to $t$, is equal to :

(1) 121

(2) 144

(3) 169

(4) 225

Show Answer

Answer (2)

Solution

$f(\mathrm{x})=\left{\begin{array}{cc}\mathrm{x}-1 ; & \mathrm{x}=\text { even } \ 2 \mathrm{x} ; & \mathrm{x}=\text { odd }\end{array}\right.$

$f(f(\mathrm{a})))=21$

C-1: If $\mathrm{a}=$ even

$$ f(\mathrm{a})=\mathrm{a}-1=\text { odd } $$

$\mathrm{f}(\mathrm{f}(\mathrm{a}))=2(\mathrm{a}-1)=$ even

$f(f(f)))=2 a-3=21 \Rightarrow a=12$

C-2: If $\mathrm{a}=$ odd

$$ \begin{aligned} & f(\mathrm{a})=2 \mathrm{a}=\text { even } \ & f(f(\mathrm{a}))=2 \mathrm{a}-1=\text { odd } \ & f(f(f(\mathrm{a})))=4 \mathrm{a}-2=21 \text { (Not possible) } \end{aligned} $$

Hence $\mathrm{a}=12$

Now

$$ \begin{aligned} & \lim _{x \rightarrow 12^{-}}\left(\frac{|x|^{3}}{2}-\left[\frac{x}{12}\right]\right) \ & =\lim _{x \rightarrow 12^{-}} \frac{|x|^{3}}{12}-\lim _{x \rightarrow 12^{-}}\left[\frac{x}{12}\right] \ & =144-0=144 \end{aligned} $$