Inverse Trigonometric Functions Question 3

Question 3 - 2024 (31 Jan Shift 1)

For $\alpha, \beta, \gamma \neq 0$. If $\sin ^{-1} \alpha+\sin ^{-1} \beta+\sin ^{-1} \gamma=\pi$ and $(\alpha+\beta+\gamma)(\alpha-\gamma+\beta)=3 \alpha \beta$, then $\gamma$ equal to

(1) $\frac{\sqrt{3}}{2}$

(2) $\frac{1}{\sqrt{2}}$

(3) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$

(4) $\sqrt{3}$

Show answer

Answer (1)

Solution

Let $\sin ^{-1} \alpha=\mathrm{A}, \sin ^{-1} \beta=\mathrm{B}, \sin ^{-1} \gamma=\mathrm{C}$

$\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$

$(\alpha+\beta)^{2}-\gamma^{2}=3 \alpha \beta$

$\alpha^{2}+\beta^{2}-\gamma^{2}=\alpha \beta$

$\frac{\alpha^{2}+\beta^{2}-\gamma^{2}}{2 \alpha \beta}=\frac{1}{2}$

$\Rightarrow \cos \mathrm{C}=\frac{1}{2}$

$\sin \mathrm{C}=\gamma$

$\cos \mathrm{C}=\sqrt{1-\gamma^{2}}=\frac{1}{2}$

$\gamma=\frac{\sqrt{3}}{2}$