Inverse Trigonometric Functions Question 2

Question 2 - 2024 (29 Jan Shift 2)

Let $\mathrm{x}=\frac{\mathrm{m}}{\mathrm{n}}\left(\mathrm{m}, \mathrm{n}\right.$ are co-prime natural numbers) be a solution of the equation $\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$ and let $\alpha, \beta(\alpha>\beta)$ be the roots of the equation $\mathrm{mx}^{2}-\mathrm{nx}-\mathrm{m}+\mathrm{n}=0$. Then the point $(\alpha, \beta)$ lies on the line

(1) $3 x+2 y=2$

(2) $5 x-8 y=-9$

(3) $3 x-2 y=-2$

(4) $5 x+8 y=9$

Show Answer

Answer (4)

Solution

Assume $\sin ^{-1} x=\theta$

$\cos (2 \theta)=\frac{1}{9}$

$\sin \theta= \pm \frac{2}{3}$

as $\mathrm{m}$ and $\mathrm{n}$ are co-prime natural numbers,

$x=\frac{2}{3}$

i.e. $m=2, n=3$

So, the quadratic equation becomes $2 x^{2}-3 x+1=0$ whose roots are $\alpha=1, \beta=\frac{1}{2}\left(1, \frac{1}{2}\right)$ lies on $5 x+8 y=9$