Inverse Trigonometric Functions Question 1

Question 1 - 2024 (27 Jan Shift 2)

Considering only the principal values of inverse trigonometric functions, the number of positive real values of $x$ satisfying $\tan ^{-1}(x)+\tan ^{-1}(2 x)=\frac{\pi}{4}$ is :

(1) More than 2

(2) 1

(3) 2

(4) 0

Show Answer

Answer (2)

Solution

$\tan ^{-1} x+\tan ^{-1} 2 x=\frac{\pi}{4} ; x>0$

$\Rightarrow \tan ^{-1} 2 \mathrm{x}=\frac{\pi}{4}-\tan ^{-1} \mathrm{x}$

Taking tan both sides

$\Rightarrow 2 x=\frac{1-x}{1+x}$

$\Rightarrow 2 x^{2}+3 x-1=0$

$x=\frac{-3 \pm \sqrt{9+8}}{8}=\frac{-3 \pm \sqrt{17}}{8}$

Only possible $x=\frac{-3+\sqrt{17}}{8}$