Hyperbola Question 2

Question 2 - 2024 (01 Feb Shift 1)

Let $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1, \mathrm{a}>\mathrm{b}$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$.

Then the square of the eccentricity of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is :

(1) 3

(2) $7 / 2$

(3) $3 / 2$

(4) $5 / 2$

Show Answer

Answer (3)

Solution

$e=\frac{1}{\sqrt{2}}=\sqrt{1-\frac{b^{2}}{a^{2}}} \Rightarrow \frac{1}{2}=1-\frac{b^{2}}{a^{2}}$

$\frac{2 b^{2}}{a}=14$

$e_{H}=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{1}{2}}=\sqrt{\frac{3}{2}}$

$\left(e_{H}\right)^{2}=\frac{3}{2}$