Functions Question 9

Question 9 - 2024 (30 Jan Shift 1)

Let $A={1,2,3, \ldots 7}$ and let $P(1)$ denote the power set of $A$. If the number of functions $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{P}(\mathrm{A})$ such that $\mathrm{a} \in \mathrm{f}(\mathrm{a}), \forall \mathrm{a} \in \mathrm{A}$ is $\mathrm{m}^{\mathrm{n}}, \mathrm{m}$ and $\mathrm{n} \in \mathrm{N}$ and $\mathrm{m}$ is least, then $\mathrm{m}+\mathrm{n}$ is equal to

Show Answer

Answer (44)

Solution

$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{P}(\mathrm{A})$

$a \in f(a)$

That means ‘a’ will connect with subset which contain element ’ $a$ '

Total options for 1 will be $2^{6}$. (Because $2^{6}$ subsets contains 1 )

Similarly, for every other element

Hence, total is $2^{6} \times 2^{6} \times 2^{6} \times 2^{6} \times 2^{6} \times 2^{6} \times 2^{6}=2^{42}$

Ans. $2+42=44$