Functions Question 13

Question 13 - 2024 (31 Jan Shift 2)

If the function $f:(-\infty,-1] \rightarrow(a, b]$ defined by $f(x)=e^{x^{3}-3 x+1}$ is one-one and onto, then the distance of the point $\mathrm{P}(2 \mathrm{~b}+4, \mathrm{a}+2)$ from the line $x+e^{-3} y=4$ is :

(1) $2 \sqrt{1+\mathrm{e}^{6}}$

(2) $4 \sqrt{1+\mathrm{e}^{6}}$

(3) $3 \sqrt{1+\mathrm{e}^{6}}$

(4) $\sqrt{1+\mathrm{e}^{6}}$

Show Answer

Answer (1)

Solution

$f(x)=e^{x^{3}-3 x+1}$

$f^{\prime}(x)=e^{x^{3}-3 x+1} \cdot\left(3 x^{2}-3\right)$

$=e^{x^{3}-3 x+1} \cdot 3(x-1)(x+1)$

For $f^{\prime}(x) \geq 0$

$\therefore \mathrm{f}(\mathrm{x})$ is increasing function

$\therefore a=e^{-\infty}=0=f(-\infty)$

$b=e^{-1+3+1}=e^{3}=f(-1)$

$P(2 b+4, a+2)$

$\therefore P\left(2 e^{3}+4,2\right)$

Description of the image

$\mathrm{d}=\frac{\left(2 \mathrm{e}^{3}+4\right)+2 \mathrm{e}^{-3}-4}{\sqrt{1+\mathrm{e}^{-6}}}=2 \sqrt{1+\mathrm{e}^{6}}$