Functions Question 10

Question 10 - 2024 (30 Jan Shift 2)

If the domain of the function $f(x)=\log _{e}\left(\frac{2 x+3}{4 x^{2}+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$ is $(\alpha, \beta]$, then the value of $5 \beta-4 \alpha$ is equal to

(1) 10

(2) 12

(3) 11

(4) 9

Show Answer

Answer (2)

Solution

$\frac{2 x+3}{4 x^{2}+x-3}>0$ and $-1 \leq \frac{2 x-1}{x+2} \leq 1$

$\frac{2 \times+3}{(4 x-3)(x+1)}>0 \quad \frac{3 x+1}{x+2} \geq 0 & \frac{x-3}{x+2} \leq 0$

$(-\infty / 2+-1$

$(-2,3] \ldots\left[\frac{-1}{3}, \infty\right)$

$\left[\frac{-1}{3}, 3\right]$…(3)

$(1) \cap(2) \cap(3)$

$\left(\frac{3}{4}, 3\right]$

$\alpha=\frac{3}{4} \beta=3$

$5 \beta-4 \alpha=15-3=12$