Differential Equations Question 9

Question 9 - 2024 (29 Jan Shift 1)

A function $y=f(x)$ satisfies

$f(x) \sin 2 x+\sin x-\left(1+\cos ^{2} x\right) f^{\prime}(x)=0$ with condition $f(0)=0$. Then $f\left(\frac{\pi}{2}\right)$ is equal to

(1) 1

(2) 0

(3) -1

(4) 2

Show Answer

Answer (1)

Solution

$\frac{d y}{d x}-\left(\frac{\sin 2 x}{1+\cos ^{2} x}\right) y=\sin x$

I.F. $=1+\cos ^{2} x$

$y \cdot\left(1+\cos ^{2} x\right)=\int(\sin x) d x$

$=-\cos x+C$

$x=0, C=1$

$y\left(\frac{\pi}{2}\right)=1$