Differential Equations Question 5

Question 5 - 2024 (27 Jan Shift 1)

Let $x=x(t)$ and $y=y(t)$ be solutions of the differential equations $\frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{ax}=0$ and $\frac{\mathrm{dy}}{\mathrm{dt}}+\mathrm{by}=0$ respectively, $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. Given that $x(0)=2 ; y(0)=1$ and $3 y(1)=2 x(1)$, the value of $t$, for which $\mathrm{x}(\mathrm{t})=\mathrm{y}(\mathrm{t})$, is :

(1) $\log _{\frac{2}{3}} 2$

(2) $\log _{4} 3$

(3) $\log _{3} 4$

(4) $\log _{\frac{4}{3}} 2$

Show Answer

Answer (4)

Solution

$\frac{d x}{d t}+a x=0$

$\frac{d x}{x}=-a d t$

$\int \frac{d x}{x}=-a \int d t$

$\ln |x|=-a t+c$

at $t=0, x=2$

$\ln 2=0+c$

$\ln x=-a t+\ln 2$

$\frac{x}{2}=e^{-a t}$

$\mathrm{x}=2 \mathrm{e}^{-\mathrm{at}}$.

$\frac{d y}{d t}+b y=0$

$\frac{d y}{y}=-b d t$

$\ln |y|=-b t+\lambda$

$\mathrm{t}=0, \mathrm{y}=1$

$0=0+\lambda$

$y=e^{-b t}$.

According to question

$3 \mathrm{y}(1)=2 \mathrm{x}(1)$

$3 \mathrm{e}^{-\mathrm{b}}=2\left(2 \mathrm{e}^{-\mathrm{a}}\right)$

$\mathrm{e}^{\mathrm{a}-\mathrm{b}}=\frac{4}{3}$

For $x(t)=y(t)$

$\Rightarrow 2 \mathrm{e}^{-\mathrm{at}}=\mathrm{e}^{-\mathrm{bt}}$

$2=\mathrm{e}^{(\mathrm{a}-\mathrm{b}) \mathrm{t}}$

$$ \begin{aligned} & 2=\left(\frac{4}{3}\right)^{\mathrm{t}} \ & \log _{\frac{4}{3}} 2=\mathrm{t} \end{aligned} $$