Differential Equations Question 14

Question 14 - 2024 (31 Jan Shift 1)

The solution curve of the differential equation

$y \frac{d x}{d y}=x\left(\log _{e} x-\log _{e} y+1\right), x>0, y>0$ passing

through the point $(e, 1)$ is

(1) $\left|\log _{e} \frac{y}{x}\right|=x$

(2) $\left|\log _{e} \frac{y}{x}\right|=y^{2}$

(3) $\left|\log _{e} \frac{x}{y}\right|=y$

(4) $2\left|\log _{e} \frac{x}{y}\right|=y+1$

Show Answer

Answer (3)

Solution

$\frac{d x}{d y}=\frac{x}{y}\left(\ln \left(\frac{x}{y}\right)+1\right)$

Lat $\frac{x}{y}-t \Rightarrow x-t y$

$\frac{d x}{d y}-t+y \frac{d t}{d y}$

$\mathrm{t}+\mathrm{y} \frac{\mathrm{dt}}{\mathrm{dy}}-\mathrm{t}(\mathrm{l}(\mathrm{t})+1)$

$y \frac{d t}{d y}-t \ln (t) \Rightarrow \frac{d t}{t \ln (t)}=\frac{d y}{y}$

$\Rightarrow \int \frac{\mathrm{dt}}{\mathrm{t} \cdot \ln (\mathrm{t})}-\int \frac{\mathrm{dy}}{\mathrm{y}}$

$\Rightarrow \int \frac{\mathrm{d}}{\mathrm{p}}-\int \frac{\mathrm{dy}}{\mathrm{y}} \quad \operatorname{let} \ln \mathrm{t}=\mathrm{p}$

$\frac{1}{\mathrm{t}} \mathrm{dt}=\mathrm{dp}$

$\Rightarrow \ln p=\ln y+c$

$\ln (\ln t)=\ln y+c$

$\ln \left(\ln \left(\frac{x}{y}\right)\right)-\ln y+c$

at $\mathbf{x}=\mathbf{e}, y=1$

$\ln \left(\ln \left(\frac{e}{1}\right)\right)-\ln (1)+c \Rightarrow c=0$

$\ln \left|\ln \left(\frac{x}{y}\right)\right|-\ln y$

$\left.\ln \left(\frac{x}{y}\right) \right\rvert,-e^{k y}$

$\left|\ln \left(\frac{x}{y}\right)\right|-y$