Differential Equations Question 11

Question 11 - 2024 (29 Jan Shift 2)

If $\sin \left(\frac{y}{x}\right)=\log _{e}|x|+\frac{\alpha}{2}$ is the solution of the differential equation $x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$ and $y(1)=\frac{\pi}{3}$, then $\alpha^{2}$ is equal to

(1) 3

(2) 12

(3) 4

(4) 9

Show Answer

Answer (1)

Solution

Differential equation :-

$x \cos \frac{y}{x} \frac{d y}{d x}=y \cos \frac{y}{x}+x$

$\cos \frac{y}{x}\left[x \frac{d y}{d x}-y\right]=x$

Divide both sides by $\mathrm{x}^{2}$

$\cos \frac{y}{x}\left(\frac{x \frac{d y}{d x}-y}{x^{2}}\right)=\frac{1}{x}$

Let $\frac{y}{x}=t$

$\cos t\left(\frac{d t}{d x}\right)=\frac{1}{x}$

$\cos t d t=\frac{1}{x} d x$

Integrating both sides

$\sin t=\ln |x|+c$

$\sin \frac{y}{x}=\ln |x|+c$

Using $\mathrm{y}(1)=\frac{\pi}{3}$, we get $\mathrm{c}=\frac{\sqrt{3}}{2}$

So, $\alpha=\sqrt{3} \Rightarrow \alpha^{2}=3$