Determinants Question 5

Question 5 - 2024 (29 Jan Shift 2)

Let for any three distinct consecutive terms $\mathrm{a}, \mathrm{b}, \mathrm{c}$ of an A.P, the lines $a x+b y+c=0$ be concurrent at the point $\mathrm{P}$ and $\mathrm{Q}(\alpha, \beta)$ be a point such that the system of equations

$x+y+z=6$,

$2 x+5 y+\alpha z=\beta$ and

$x+2 y+3 z=4$, has infinitely many solutions. Then $(\mathrm{PQ})^{2}$ is equal to

Show Answer

Answer (113)

Solution

$\because a, b, c$ and in A.P

$\Rightarrow 2 b=a+c \Rightarrow a-2 b+c=0$

$\therefore a x+b y+c$ passes through fixed point $(1,-2)$

$\therefore P=(1,-2)$

For infinite solution,

$\mathrm{D}=\mathrm{D} 1=\mathrm{D} 2=\mathrm{D} 3=0$

$D:\left|\begin{array}{lll}1 & 1 & 1 \ 2 & 5 & \alpha \ 1 & 2 & 3\end{array}\right|=0$

$\Rightarrow \alpha=8$

$D_{1}:\left|\begin{array}{lll}6 & 1 & 1 \ \beta & 5 & \alpha \ 4 & 2 & 3\end{array}\right|=0 \Rightarrow \beta=6$

$\therefore Q=(8,6)$

$\therefore P Q^{2}=113$