Determinants Question 4

Question 4 - 2024 (27 Jan Shift 2)

The values of $\alpha$, for which

$\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$,

lie in the interval

(1) $(-2,1)$

(2) $(-3,0)$

(3) $\left(-\frac{3}{2}, \frac{3}{2}\right)$

(4) $(0,3)$

Show Answer

Answer (2)

Solution

$$ \begin{aligned} & \left|\begin{array}{ccc} 1 & \frac{3}{2} & \alpha+\frac{3}{2} \ 1 \text { nathon } \frac{1}{3} & \alpha+\frac{1}{3} \ 2 \alpha+3 & 3 \alpha+1 & 0 \end{array}\right|=0 \ & \Rightarrow(2 \alpha+3)\left{\frac{7 \alpha}{6}\right}-(3 \alpha+1)\left{\frac{-7}{6}\right}=0 \ & \Rightarrow(2 \alpha+3) \cdot \frac{7 \alpha}{6}+(3 \alpha+1) \cdot \frac{7}{6}=0 \ & \Rightarrow 2 \alpha^{2}+3 \alpha+3 \alpha+1=0 \ & \Rightarrow 2 \alpha^{2}+6 \alpha+1=0 \ & \Rightarrow \alpha=\frac{-3+\sqrt{7}}{2}, \frac{-3-\sqrt{7}}{2} \end{aligned} $$

Hence option (2) is correct.