Determinants Question 2

Question 2 - 2024 (01 Feb Shift 2)

Let the system of equations $x+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :

(1) 28

(2) 17

(3) 22

(4) 15

Show Answer

Answer (2)

Solution

$x+2 y+3 z=5$

$2 x+3 y+z=9$

$4 x+3 y+\lambda z=\mu$

for infinite following $\Delta=\Delta_{1}=\Delta_{2}=\Delta_{3}=0$

$\Delta=\left|\begin{array}{lll}1 & 2 & 3 \ 2 & 3 & 1 \ 4 & 3 & \lambda\end{array}\right|=0 \Rightarrow \lambda=-13$

$\Delta_{1}=\left|\begin{array}{ccc}5 & 2 & 3 \ 9 & 3 & 1 \ \mu & 3 & -13\end{array}\right|=0 \Rightarrow \mu=15$

$\Delta_{2}=\left|\begin{array}{ccc}1 & 5 & 3 \ 2 & 9 & 1 \ 4 & 15 & -13\end{array}\right|=0$

$\Delta_{3}=\left|\begin{array}{ccc}1 & 2 & 5 \ 2 & 3 & 9 \ 4 & 3 & 15\end{array}\right|=0$

for $\lambda=-13, \mu=15$ system of equation has infinite solution hence $\lambda+2 \mu=17$