Continuity And Differentiability Question 9

Question 9 - 2024 (31 Jan Shift 1)

Let $g(x)$ be a linear function and $f(x)=\left{\begin{array}{cl}g(x) & , x \leq 0 \ \left(\frac{1+x}{2+x}\right)^{\frac{1}{x}} & , x>0\end{array}\right.$, is continuous at $x=0$. If $f^{\prime}(1)=f(-1)$, then the value of $g(3)$ is

(1) $\frac{1}{3} \log _{\mathrm{e}}\left(\frac{4}{9 \mathrm{e}^{1 / 3}}\right)$

(2) $\frac{1}{3} \log _{\mathrm{e}}\left(\frac{4}{9}\right)+1$

(3) $\log _{\circ}\left(\frac{4}{9}\right)-1$

(4) $\log _{6}\left(\frac{4}{9 e^{1 / 3}}\right)$

Show Answer

Answer (4)

Solution

Let $g(x)=a x+b$

Now function $f(x)$ in continuous at $x=0$

$\therefore \lim _{x \rightarrow 0^{+}} f(x)=f(0)$

$\Rightarrow \lim _{x \rightarrow 0}\left(\frac{1+x}{2+x}\right)^{\frac{1}{x}}=b$

$\Rightarrow 0=b$

$\therefore g(x)=a x$

Now, for $\mathbf{x}>0$

$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}} \cdot\left(\frac{1+\mathrm{x}}{2+\mathrm{x}}\right)^{\frac{1}{x}-1} \cdot \frac{1}{(2+\mathrm{x})^{2}}$

$+\left(\frac{1+\mathrm{x}}{2+\mathrm{x}}\right)^{\frac{1}{x}} \cdot \ln \left(\frac{1+\mathrm{x}}{2+\mathrm{x}}\right) \cdot\left(-\frac{1}{\mathrm{x}^{2}}\right)$

$\therefore \mathrm{f}^{\prime}(1)=\frac{1}{9}-\frac{2}{3} \cdot \ln \left(\frac{2}{3}\right)$

And $f(-1)=g(-1)=-a$

$\therefore \mathrm{a}=\frac{2}{3} \ln \left(\frac{2}{3}\right)-\frac{1}{9}$

$\therefore \mathrm{g}(3)=2 \ln \left(\frac{2}{3}\right)-\frac{1}{3}$

$=\ln \left(\frac{4}{9 \cdot \mathrm{e}^{1 / 3}}\right)$