Continuity And Differentiability Question 5

Question 5 - 2024 (29 Jan Shift 2)

Let $f(x)=\sqrt{\lim _{r \rightarrow x}\left{\frac{2 r^{2}\left[(f(r))^{2}-f(x) f(r)\right]}{r^{2}-x^{2}}-r^{3} e^{\frac{f(r)}{r}}\right}}$ be differentiable in $(-\infty, 0) \cup(0, \infty)$ and $f(1)=1$.

Then the value of ea, such that $f(a)=0$, is equal to

Show Answer

Answer (2)

Solution

$\mathrm{f}(1)=1, \mathrm{f}(\mathrm{a})=0$

$f^{2}(x)=\operatorname{Lim}_{r \rightarrow x}\left(\frac{2 r^{2}\left(f^{2}(r)-f(x) f(r)\right)}{r^{2}-x^{2}}-r^{3} e^{\frac{f(r)}{r}}\right)$

$=\operatorname{Lim}_{r \rightarrow x}\left(\frac{2 r^{2} f(r)}{r+x} \frac{(f(r)-f(x))}{r-x}-r^{3} e^{\frac{f(r)}{r}}\right)$

$f^{2}(x)=\frac{2 x^{2} f(x)}{2 x} f^{\prime}(x)-x^{3} e^{\frac{f(x)}{x}}$

$y^{2}=x y \frac{d y}{d x}-x^{3} e^{\frac{y}{x}}$

$\frac{y}{x}=\frac{d y}{d x}-\frac{x^{2}}{y} e^{\frac{y}{x}}$

Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

$\mathrm{v}=\mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}-\frac{\mathrm{x}}{\mathrm{v}} \mathrm{e}^{\mathrm{v}}$

$\frac{d v}{d x}=\frac{e^{v}}{v} \Rightarrow e^{-v} v d v=d x$

Integrating both side

$\mathrm{e}^{\mathrm{v}}(\mathrm{x}+\mathrm{c})+1+\mathrm{v}=0$

$\mathrm{f}(1)=1 \Rightarrow \mathrm{x}=1, \mathrm{y}=1$

$\Rightarrow \mathrm{c}=-1-\frac{2}{\mathrm{e}}$

$\mathrm{e}^{\mathrm{v}}\left(-1-\frac{2}{\mathrm{e}}+\mathrm{x}\right)+1+\mathrm{v}=0$

$\mathrm{e}^{\frac{y}{x}}\left(-1-\frac{2}{\mathrm{e}}+\mathrm{x}\right)+1+\frac{\mathrm{y}}{\mathrm{x}}=0$

$\mathrm{x}=\mathrm{a}, \mathrm{y}=0 \Rightarrow \mathrm{a}=\frac{2}{\mathrm{e}}$

$\mathrm{ae}=2$