Continuity And Differentiability Question 10

Question 10 - 2024 (31 Jan Shift 2)

Consider the function $\mathrm{f}:(0, \infty) \rightarrow \mathrm{R}$ defined by $f(x)=e^{-\left|\log _{6} x\right|}$. If $m$ and $n$ be respectively the number of points at which $f$ is not continuous and $f$ is not differentiable, then $\mathrm{m}+\mathrm{n}$ is

(1) 0

(2) 3

(3) 1

(4) 2

Show Answer

Answer (4)

Solution

$f:(0, \infty) \rightarrow R$

$f(x)=e^{-\left|\log _{0} x\right|}$

$f(x)=\frac{1}{e^{|\ln x|}}=\left{\begin{array}{l}\frac{1}{e^{-\ln x}} ; 0<x<1 \ \frac{1}{e^{\ln x}} ; x \geq 1\end{array}\right.$

Description of the image

$\left{\begin{array}{l}\frac{1}{\frac{1}{x}}=x ; 0<x<1 \ \frac{1}{x}, x \geq 1\end{array}\right.$

$\mathrm{m}=0$ (No point at which function is not continuous)

$\mathrm{n}=1$ (Not differentiable)

$\therefore \mathrm{m}+\mathrm{n}=1$