Complex Number Question 7

Question 7 - 2024 (29 Jan Shift 1)

If $z=\frac{1}{2}-2 i$, is such that $|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}$ and $\alpha, \beta \in R \quad$, then $\alpha+\beta$ is equal to

(1) -4

(2) 3

(3) 2

(4) -1

Show Answer

Answer (2)

Solution

$\mathrm{z}=\frac{1}{2}-2 \mathrm{i}$

$|\mathbf{z}+1|=\alpha z+\beta(1+\mathrm{i})$

$\left|\frac{3}{2}-2 \mathrm{i}\right|=\frac{\alpha}{2}-2 \alpha \mathrm{i}+\beta+\beta \mathrm{i}$

$\left|\frac{3}{2}-2 \mathrm{i}\right|=\left(\frac{\alpha}{2}+\beta\right)+(\beta-2 \alpha) \mathrm{i}$

$\beta=2 \alpha$ and $\frac{\alpha}{2}+\beta=\sqrt{\frac{9}{4}+4}$

$\alpha+\beta=3$