Complex Number Question 12

Question 12 - 2024 (30 Jan Shift 2)

If $\mathrm{z}$ is a complex number, then the number of common roots of the equation $z^{1985}+z^{100}+1=0$ and $z^{3}+2 z^{2}+2 z+1=0$, is equal to :

(1) 1

(2) 2

(3) 0

(4) 3

Show Answer

Answer (2)

Solution

Sol. $z^{1985}+z^{100}+1=0 & z^{3}+2 z^{2}+2 z+1=0$

$$ \begin{aligned} & (z+1)\left(z^{2}-z+1\right)+2 z(z+1)=0 \ & (z+1)\left(z^{2}+z+1\right)=0 \end{aligned} $$

$$ \Rightarrow \quad z=-1, \quad z=w, w^{2} $$

Now putting $z=-1$ not satisfy

Now put $\mathrm{z}=\mathrm{w}$

$$ \begin{aligned} & \Rightarrow \quad \mathrm{w}^{1985}+\mathrm{w}^{100}+1 \ & \Rightarrow \quad \mathrm{w}^{2}+\mathrm{w}+1=0 \end{aligned} $$

Also, $\mathrm{z}=\mathrm{w}^{2}$

$$ \begin{aligned} & \Rightarrow \quad \mathrm{w}^{3970}+\mathrm{w}^{200}+1 \ & \Rightarrow \quad \mathrm{w}+\mathrm{w}^{2}+1=0 \end{aligned} $$

Two common root