Circle Question 9

Question 9 - 2024 (31 Jan Shift 1)

If one of the diameters of the circle $x^{2}+y^{2}-10 x+4 y+13=0$ is a chord of another circle $C$, whose center is the point of intersection of the lines $2 x+3 y=12$ and $3 x-2 y=5$, then the radius of the circle $\mathrm{C}$ is

(1) $\sqrt{20}$

(2) 4

(3) 6

(4) $3 \sqrt{2}$

Show Answer

Answer (3)

Solution

Description of the image

$2 x+3 y=12$

$3 x-2 y=5$

$13 x=39$

$x=3, y=2$

Center of given circle is $(5,-2)$

Radius $\sqrt{25+4-13}=4$

$\therefore C M=\sqrt{4+16}=5 \sqrt{2}$

$\therefore C P=\sqrt{16+20}=6$