Circle Question 4

Question 4 - 2024 (27 Jan Shift 1)

Four distinct points $(2 \mathrm{k}, 3 \mathrm{k}),(1,0),(0,1)$ and $(0,0)$ lie on a circle for $k$ equal to :

(1) $\frac{2}{13}$

(2) $\frac{3}{13}$

(3) $\frac{5}{13}$

(4) $\frac{1}{13}$

Show Answer

Answer (3)

Solution

$(2 \mathrm{k}, 3 \mathrm{k})$ will lie on circle whose diameter is $\mathrm{AB}$.

Description of the image

$(x-1)(x)+(y-1)(y)=0$

$x^{2}+y^{2}-x-y=0 \ldots$ (i)

Satisfy $(2 k, 3 k)$ in (i)

$(2 k)^{2}+(3 k)^{2}-2 k-3 k=0$

$13 k^{2}-5 k=0$

$\mathrm{k}=0, \mathrm{k}=\frac{5}{13}$

hence $\mathrm{k}=\frac{5}{13}$