Circle Question 2

Question 2 - 2024 (01 Feb Shift 1)

Let the line $\mathrm{L}: \sqrt{2} \mathrm{x}+\mathrm{y}=\alpha$ pass through the point of the intersection $\mathrm{P}$ (in the first quadrant) of the circle $x^{2}+y^{2}=3$ and the parabola $x^{2}=2 y$. Let the line $L$ touch two circles $C_{1}$ and $C_{2}$ of equal radius $2 \sqrt{3}$. If the centres $Q_{1}$ and $Q_{2}$ of the circles $C_{1}$ and $C_{2}$ lie on the y-axis, then the square of the area of the triangle $P_{1} Q_{2}$ is equal to

Show Answer

Answer (72)

Solution

$$ \begin{gathered} x^{2}+y^{2}=3 \text { and } x^{2}=2 y \ y^{2}+2 y+3=0 \Rightarrow(y+3)(y-1)=0 \ y=-3 \text { or } y=1 \ \mathrm{y}=1 \mathrm{x}=\sqrt{2} \Rightarrow P(\sqrt{2}, 1) \end{gathered} $$

$\mathrm{p}$ lies on the line

$\sqrt{2} x+y=\alpha$

$\sqrt{2}(\sqrt{2})+1=\alpha$

$\alpha=3$

For circle $\mathrm{C}_{1}$

$\mathrm{Q}_{1}$ lies on $\mathrm{y}$ axis

Let $\mathrm{Q}_{1}(0, \alpha)$ coordinates

$\mathrm{R}_{1}=2 \sqrt{3}$ (Given

Line $\mathrm{L}$ act as tangent

Apply $\mathrm{P}=\mathrm{r}$ (condition of tangency)

$\Rightarrow\left|\frac{\alpha-3}{\sqrt{3}}\right|=2 \sqrt{3}$

$\Rightarrow|\alpha-3|=6$

$\alpha-3=6$ or $\alpha-3=-6$

$\Rightarrow \alpha=9 \quad \alpha=-3$

$\triangle P Q_{1} Q_{2}=\frac{1}{2}\left|\begin{array}{ccc}\sqrt{2} & 1 & 1 \ 0 & 9 & 1 \ 0 & -3 & 1\end{array}\right|$

$=\frac{1}{2}(\sqrt{2}(12))=6 \sqrt{2}$

$\left(\Delta P Q_{1} Q_{2}\right)^{2}=72$