Binomial Theorem Question 5

Question 5 - 2024 (27 Jan Shift 2)

The coefficient of $x^{2012}$ in the expansion of $(1-x)^{2008}\left(1+x+x^{2}\right)^{2007}$ is equal to

Show Answer

Answer (0)

Solution

$(1-x)(1-x)^{2007}\left(1+x+x^{2}\right)^{2007}$

$(1-x)\left(1-x^{3}\right)^{2007}$

$(1-x)\left({ }^{2007} C_{0}-{ }^{2007} C_{1}\left(x^{3}\right)+\ldots \ldots\right)$

General term

$(1-x)\left((-1)^{\mathrm{r} 2007} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{3 \mathrm{r}}\right)$

$(-1)^{\mathrm{r} 2007} \mathrm{C}{\mathrm{r}} \mathrm{x}^{3 \mathrm{r}}-(-1)^{\mathrm{r} 2007} \mathrm{C}{\mathrm{r}} \mathrm{x}^{3 \mathrm{r}+1}$

$3 \mathrm{r}=2012$

$\mathrm{r} \neq \frac{2012}{3}$

$3 \mathrm{r}+1=2012$

$3 \mathrm{r}=2011$

$\mathrm{r} \neq \frac{2011}{3}$

Hence there is no term containing $\mathrm{x}^{2012}$.

So coefficient of $\mathrm{x}^{2012}=0$