Binomial Theorem Question 11

Question 11 - 2024 (31 Jan Shift 1)

In the expansion of $(1+x)\left(1-x^{2}\right)\left(1+\frac{3}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}}\right)^{5}, x \neq 0$, the sum of the coefficient of $x^{3}$ and $x^{-13}$ is equal to

Show Answer

Answer (118)

Solution

$(1+x)\left(1-x^{2}\right)\left(1+\frac{3}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}}\right)^{5}$

$=(1+x)\left(1-x^{2}\right)\left(\left(1+\frac{1}{x}\right)^{3}\right)^{5}$

$=\frac{(1+x)^{2}(1-x)(1+x)^{15}}{x^{15}}$

$=\frac{(1+x)^{17}-x(1+x)^{17}}{x^{15}}$

$=\operatorname{coeff}\left(x^{3}\right)$ in the expansion $\approx \operatorname{coeff}\left(x^{18}\right)$ in

$(1+x)^{17}-x(1+x)^{17}$

$=0-1$

$=-1$

coeff $\left(x^{-13}\right)$ in the expansion $\approx \operatorname{coeff}\left(x^{2}\right)$ in

$(1+x)^{17}-x(1+x)^{17}$

$=\left(\begin{array}{c}17 \ 2\end{array}\right)-\left(\begin{array}{c}17 \ 1\end{array}\right)$

$=17 \times 8-17$

$=17 \times 7$

$=119$

Hence Answer $=119-1=118$